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Abstract The motion of an irrotational incompressible fluid driven by an assembly of stirrers, of arbitrary shape,
moving at specified velocities in the fluid is considered. The problem is shown to be equivalent to a standard math-
ematical problem in potential theory known as the modified Schwarz problem. It turns out that the solution to this
problem can be written down, in closed form, as an explicit integral depending on the conformal mapping to the
fluid region from a canonical pre-image region and a kernel function expressed in terms of a transcendental function
called the Schottky–Klein prime function. In this way, an explicit integral solution, up to conformal mapping, for
the complex potential of the flow generated by an arbitrary assembly of stirrers can be written down.

Keywords Ideal flow · Multiply connected · Schwarz problem · Stirrers

1 Introduction

There has been a recent revival of interest in computing the irrotational flow generated by objects moving in a
planar incompressible inviscid fluid. Wang [1] recently considered the problem of the fluid motion generated by
two moving cylindrical objects. Burton et al. [2] studied the same problem from a mathematical-physics viewpoint.
An independent resurgence of interest in this basic fluid-dynamical problem has also occurred since Boyland et al.
[3] proposed the use of a circular disk-containing ideal fluid and a finite number of circular disk “stirrers” as a basic
model (a “batch stirring device”) for understanding the topological fluid mechanics associated with mixing. Other
studies on such systems have been performed subsequently (e.g. [4]).

The purpose of this paper is to show that there exists an explicit integral formula, up to conformal mapping,
for the solution to this problem for an arbitrary collection of M stirrers in any bounded domain (or indeed for
any collection of stirrers in an unbounded domain). This is done by showing that this particular fluid-dynamics
problem is equivalent to a celebrated general problem in potential theory known as the modified Schwarz problem.
An integral formula for the solution to this problem has recently been reported by the author [5] using a special
transcendental function known as the Schottky–Klein prime function (in fact, this same function will be used, in
a different context, in the present paper). The form of this explicit solution is not only compact but also easily
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Fig. 1 A general fluid
region D with two moving
stirrers of arbitrary shape
and the pre-image circular
domain Dζ which maps to
D under mapping z(ζ ).
Dζ is a triply connected
circular domain
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implementable in practice. The efficacy of this formula for practical computation of the particular class of flow
problems considered here is demonstrated by a series of examples in Sect. 6.

In the case of just two stirrers (so that the fluid region is doubly connected) considered by Wang [1] and
Burton et al. [2], the problem admits a celebrated integral-formula solution known as the Villat formula [6]—a fact
recently pointed out by Crowdy et al. [7]. The Villat formula is only relevant to doubly connected domains. This
paper exploits a generalization of the Villat formula to higher-connected domains [5] to produce explicit integral
formulae for the irrotational flow generated by more than two stirrers (in fact, any finite number of stirrers).

The key result of this paper is to give an integral representation for the complex potentialw(z) associated with M
stirrers moving in an inviscid fluid in a given planar region D in an (x, y)-plane. Here z = x + iy. Any such region
is known to be conformally equivalent, under a conformal mapping z = z(ζ ), to a multiply connected circular
domain Dζ in a complex parametric ζ -plane (a circular domain is one whose boundaries are all circular). Figure 1
shows a schematic for the case of two stirrers (M = 2). We suppose the map z(ζ ) is known explicitly (or can be
constructed using standard conformal mapping techniques). Then, in this ζ -plane, if the j-th stirrer is moving with
complex velocity (u j , v j ), so that its complex velocity is U j = u j + iv j , the complex potential W (ζ ) ≡ w(z(ζ ))
for the flow, as a function of ζ , is given by

W (ζ ) = 1

2π

∮
C0

[
Re[−iU0z(ζ ′)]] (

d logω(ζ ′, ζ )+ d logω(ζ ′−1, ζ−1)
)

−
M∑

j=1

1

2π

∮
C j

[
Re[−iU j z(ζ

′)] + d j
] (

d logω(ζ ′, ζ )+ d logω(θ j (ζ
′−1), ζ−1)

)
, (1)

where the constants {d j | j = 1, . . . ,M} solve an M-by-M linear system given explicitly in Sect. 5,ω(., .) is a special
function introduced in Sect. 4 (it is known as the Schottky–Klein prime function [8]) and {C j | j = 0, 1, . . . ,M} are
the circular boundaries of Dζ . (Formula (1) also allows for the outer boundary C0 to be moving at some complex
speed U0). (1) is an explicit integral representation of the complex potential W (ζ ). It is then straightforward, if z(ζ )
is known, to find values of the complex potential w(z) (hence the fluid velocity) in the original (x, y)-plane.

Actually, there are many other problems in fluid dynamics where the modified Schwarz problem (or its dual, the
regular Schwarz problem) arises and the results derived here can be applied there too. For example, Crowdy and
Marshall ([9,10]) have presented a novel analytical approach to computing N -vortex motion in arbitrary multiply
connected domains bounded by islands or impenetrable walls. This is a Hamiltonian dynamical system and the
Hamiltonians (or Kirchhoff–Routh path functions) can be written down in analytical form in terms of the Schottky–
Klein prime function [9]. The effects of background flows can be incorporated into the governing Hamiltonians
additively. If some application involves the vortices evolving in a non-stationary domain—where the boundary
walls are moving according to some external influence, for example—then the results of this paper can be used to
find analytical expressions for these additional contributions to the governing Hamiltonian.

2 The problem of fluid stirrers

We seek an incompressible, irrotational flow in the fluid region D containing M solid objects {D j | j = 1, . . . ,M}
which are supposed to be moving with externally specified velocities. There exists a velocity potential φ such that

123



Explicit solution for the potential flow in an inviscid fluid 335

u = ∇φ in D. Let ∂D j denote the boundary of the object D j while the outer boundary of D will be denoted ∂D0.
The flow must satisfy the boundary conditions

u.n = Uj.n, on ∂D j (2)

where, for j = 0, 1, . . . ,M , Uj = (u j , v j ) is the externally specified velocity of object D j . Since the flow is
incompressible, ∇2φ = 0 in D. In this problem the fluid region is multiply connected so there is also the freedom
to specify the circulations around the objects {D j | j = 1, . . . ,M}. For now, we take these circulations to be zero.
The generalization to non-zero circulations around the stirrers is elucidated in Sect. 3.

Suppose u = (u, v) and consider a complex-variable formulation of the problem. In what follows, if a = (ax , ay)

denotes a vector then the notation a will be used to denote its natural complex analogue a = ax + iay . It is well-
known that the solution of the mathematical problem just stated is equivalent to finding a complex potential w(z),
analytic in D, satisfying the boundary conditions (2) where dw/dz = u − iv. Since we have additionally imposed
that there is no circulation around any of the objects {D j | j = 1, . . . ,M}, it follows that w(z) will not only be
analytic but also single-valued in D. The complex form of the unit tangent vector is zs where s denotes arclength
(taken in an appropriate direction around the boundary contour), while the complex form of the unit normal is −izs .
Note that, if a and b denote two vectors (with complex counterparts a and b) then a.b = Re[ab]. It follows that
conditions (2) become

Re

[
dw(z)

dz
(−izs)

]
= Re[U j (−izs)], on ∂D j , j = 0, 1, . . . ,M. (3)

An important observation is that these boundary conditions can be integrated with respect to the arclength s to give

Re [−iw(z)] = Re[−iU j z] + d j , on ∂D j , j = 0, 1, . . . ,M, (4)

where {d j | j = 0, 1, . . . ,M} are real constants of integration (more generally, in an unsteady flow, these will be
functions of time, but not space). Without loss of generality, we can set just one of these constants, d0 say, to zero.

It is a consequence of the Riemann mapping theorem that any multiply connected domain D in a complex z-plane
can be mapped to, via some conformal map z(ζ ), from a bounded pre-image circular domain Dζ in the ζ -plane [11].
Let this preimage domain Dζ comprise the unit ζ -disk with M smaller circular disks excised. Let C0 denote the
unit circle |ζ | = 1 and let {C j | j = 1, . . . ,M} denote the boundaries of the M enclosed circular disks. The centres
and radii of the interior circular disk will be denoted {δ j | j = 1, . . . ,M} and {q j | j = 1, . . . ,M}, respectively.
A schematic of such a pre-image region Dζ is shown in Fig. 2. We will suppose that C0 maps to the boundary ∂D0

with all other boundaries {∂D j | j = 1, . . . ,M} being the images of the other circles {C j | j = 1, . . . ,M}. Actually,
our results will also apply to any unbounded fluid region containing a total of M + 1 stirrers. In this case, the only
difference is that the conformal map z(ζ ) will contain a simple pole singularity inside Dζ which will map to the
point at infinity in the fluid region, while C0 will map to the boundary of an additional stirrer.

Let us introduce

W (ζ ) ≡ w(z(ζ )). (5)

Then (4) becomes the following boundary-value problem for the function W (ζ ) that is single-valued and analytic
in Dζ :

Re [−iW (ζ )] = Re[−iU0z(ζ )], on C0

Re [−iW (ζ )] = Re[−iU j z(ζ )] + d j , on C j , j = 1, . . . ,M.
(6)

This should be recognized as precisely the modified Schwarz problem [13] of classical potential theory for a single-
valued analytic function in Dζ given its real part on the boundary ∂Dζ , up to a set of constants. The solution for a
single-valued analytic function W (ζ ) exists provided the constants {d j | j = 1, . . . ,M} satisfy certain compatibility
conditions.
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Fig. 2 A typical multiply
connected circular domain
Dζ . The case shown is
quadruply connected
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3 The modified Schwarz problem

The usual statement of the modified Schwarz problem [12,13] is to find a single-valued analytic function fs(ζ ) in
some domain given information about its real part on the boundary of the domain, specifically,

Re [ fs(ζ )] = φ0, on C0,

Re [ fs(ζ )] = φ j + d j , on C j , j = 1, . . . ,M,
(7)

where {φ j | j = 0, 1, . . . ,M} are some given real-valued functions and {d j | j = 1, . . . ,M} is a set of constants
that must be chosen in a special way in order that a solution for a single-valued fs(ζ ) exists. The compatibility
conditions determining the set {d j | j = 1, . . . ,M} are given explicitly in Sect. 5.

Crowdy [5] has shown that an explicit integral solution of the modified Schwarz problem can be written down
in terms of the Schottky–Klein prime function associated with the circular domain Dζ . This function is defined in
the next section. For the purposes of this paper we will simply write down, and make use of, this integral solution.
It can be written concisely in the form

fs(ζ ) = 1

2π i

∮
C0

φ0

(
d logω(ζ ′, ζ )+ d logω(ζ ′−1, ζ−1)

)

−
M∑

j=1

1

2π i

∮
C j

(φ j + d j )
(

d logω(ζ ′, ζ )+ d logω(θ j (ζ
′−1), ζ−1)

)
+ iC, (8)

where C is some real constant and ω(ζ, .) is the aforementioned Schottky–Klein prime function associated with
the circular domain Dζ . For completeness, a derivation of (8) is recorded in Appendix A (however, readers only
interested in computing the flow field generated by an assembly of stirrers can simply proceed in knowledge of the
fact that (8) is the required solution).

It follows from the general formula (8) that an expression for the complex potential W (ζ ) relevant to the problem
of fluid stirrers considered here is, to within an unimportant constant, given by (1).

For completeness, we now indicate how to generalize our approach to the case where there happens to be a
non-zero circulation γk around Dk . Within this model, these circulations can be arbitrarily satisfied (however, to
be consistent with Kelvin’s circulation theorem, these circulations should be constant in time). Let the complex
potential W (ζ ) now be decomposed as follows:
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Explicit solution for the potential flow in an inviscid fluid 337

W (ζ ) =
M∑

k=1

− iγk

2π
log(ζ − δk)+ W(ζ ), (9)

where {γk |k = 1, . . . ,M, γk ∈ R} are the required circulations around the stirrers and where W(ζ ) is a single-
valued analytic function in Dζ . Note that W (ζ ) itself is no longer single-valued in Dζ . It is easy to verify that such
a decomposition yields the correct circulation around the stirrers. To see this, note that∮
∂Dk

u.dl =
∮
∂Dk

Re

[
dw

dz
dz

]
= Re

∮
∂Dk

dw = Re

∮
Ck

dW = γk, (10)

where we have used (9) and the residue theorem to obtain the final equality. Now, the boundary-value problem for
W (ζ ) can be rewritten as a boundary-value problem for the single-valued analytic function W(ζ ), i.e.,

Re [−iW(ζ )] = Re[−iU0z(ζ )] −
M∑

k=1

γk

2π
log |ζ − δk |, on C0,

Re [−iW(ζ )] = Re[−iU j z(ζ )] −
M∑

k=1

γk

2π
log |ζ − δk | + d j , on C j , j = 1, . . . ,M.

(11)

But this is just a modified Schwarz problem for the single-valued analytic function W(ζ ) (very much akin to (6))
for which an integral formula analogous to (1) can be written down. Thus, non-zero circulations around the stirrers
provide no additional difficulty.

4 The Schottky–Klein prime function

We now introduce the Schottky–Klein prime function. First, define M Möbius maps {φ j | j = 1, . . . ,M} corre-
sponding to the conjugation map for points on the circle C j . That is, if C j has equation

|ζ − δ j |2 = (ζ − δ j )(ζ̄ − δ̄ j ) = q2
j , (12)

then

ζ̄ = δ̄ j + q2
j

ζ − δ j
(13)

and so

φ j (ζ ) ≡ δ̄ j + q2
j

ζ − δ j
. (14)

If ζ is a point on Cj , then its complex conjugate is given by ζ̄ = φ j (ζ ).
Next, introduce the Möbius maps

θ j (ζ ) ≡ φ j (ζ
−1) = δ j + q2

j ζ

1 − δ̄ jζ
. (15)

Let C ′
j be the circle obtained by reflection of the circle C j in the unit circle |ζ | = 1 (i.e., the circle obtained

by the transformation ζ �→ 1/ζ̄ ). It is easily verified that the image of the circle C ′
j under the transformation θ j

is the circle C j ; indeed, θ j (ζ ) maps points on C ′
j to points on C j . Since the M circles {C j | j = 1, . . . ,M} are

non-overlapping, so are the M circles {C ′
j | j = 1, . . . ,M}. The (classical) Schottky group 	 is defined to be the

infinite free group of mappings generated by compositions of the 2M basic Möbius maps {θ j | j = 1, . . . ,M} and
their inverses {θ−1

j | j = 1, . . . ,M} and including the identity map.
One way to define the Schottky–Klein prime function is by a classical infinite product formula given in Baker

[8] in the form

ω(ζ, γ ) = (ζ − γ )ω̂(ζ, γ ), (16)
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where

ω̂(ζ, γ ) ≡
∏
θi ∈	′′

(θi (ζ )− γ )(θi (γ )− ζ )

(θi (ζ )− ζ )(θi (γ )− γ )
(17)

and where the product is over all mappings θi in the set 	′′ which denotes all mappings in the Schottky group 	
excluding the identity and all inverse maps. This means that if θ1θ2 is included, say, then θ−1

2 θ−1
1 (its inverse) must

be excluded. It is necessary to truncate the product (17) in order to write a function routine to evaluate it. A natural
way to truncate it is by the level of the mappings in the Schottky group. The identity map is the single level-zero
map. The maps {θk, θ

−1
k |k = 1, . . . ,M} are the 2M level-one maps. Any composition of these level-one maps that

does not reduce to the identity is a level-two map. By extension, a composition of any three of the level-one maps
that does not reduce to a lower level map is called a level-three map, and so on. Provided the product is convergent,
truncating it just at the level-3 maps can give 5 to 6 digits of accuracy in the evaluation of the prime function. This
is sufficient for many applications.

While formulae (16) and (17) can be used effectively for many domains Dζ , the infinite product (17) does not
converge for all choices of Dζ . However, the Schottky–Klein prime function is a well-defined function for all
choices of domain Dζ and Crowdy and Marshall [14] have devised a new method of computing it. The algorithm
described in [14] is an alternative method for computing ω(ζ, .) when the infinite product representation (16) and
(17) is not convergent (or converges too slowly to be practicable).

5 Computation of {d j | j = 1, . . . , M}

An important step is the evaluation of the constants {d j | j = 1, . . . ,M}. These are determined by a set of compat-
ibility conditions on the given boundary data of the modified Schwarz problem which must hold if the solution is
to exist. In Appendix A, the explicit form of these compatibility conditions on the given boundary data is derived.
These M conditions are∮
∂D
φ
∂σ j

∂n
ds = 0, j = 1, . . . ,M, (18)

where the functions {σ j | j = 1, . . . ,M} are known as the harmonic measures associated with D. These are defined
in Appendix A.

Crowdy and Marshall [15] have shown how to express the M harmonic measures {σ j | j = 1, . . . ,M} in terms
of the Schottky–Klein prime function. It turns out that conditions (18) are equivalent to the conditions

∮
C0

φ0
∂σ̃k

∂n
ds −

M∑
j=1

∮
C j

(φ j + d j )
∂σ̃k

∂n
ds = 0, k = 1, . . . ,M, (19)

where

σ̃k(ζ ) = log

∣∣∣∣∣
ω(ζ, φk(α))

ω(ζ, ᾱ−1)

∣∣∣∣∣ (20)

for some arbitrarily chosen point α ∈ Dζ (the functions (20) can be shown not to depend on the choice of the
point α). On use of the fact that

∂σ̃k

∂n
ds = Im

[
2
∂σ̃k

∂ζ
dζ

]
= Im

(
ωζ (ζ, φk(α))

ω(ζ, φk(α))
dζ − ωζ (ζ, ᾱ

−1)

ω(ζ, ᾱ−1)
dζ

)
, (21)

conditions (19) reduce to a simple linear system with coefficients that can be determined explicitly in terms of
integrals involving ω(ζ, .). Indeed, the linear system for the column vector d ≡ (d1, . . . , dM )

T can be written

A · d = b, (22)
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where the matrix A and vector b have components

Akj = Im

[∮
C j

(
ωζ (ζ, φk(α))

ω(ζ, φk(α))
dζ − ωζ (ζ, ᾱ

−1)

ω(ζ, ᾱ−1)
dζ

)]
,

bk = −Im

⎡
⎣ M∑

j=1

Re[−iU j z(ζ )]
(
ωζ (ζ, φk(α))

ω(ζ, φk(α))
dζ − ωζ (ζ, ᾱ

−1)

ω(ζ, ᾱ−1)
dζ

)⎤
⎦ .

(23)

With the vector d determined in this way, formula (1) can now be used to find W (ζ ).

6 Examples

To check the viability of using the integral formula (1) in practice, we recompute some streamline distributions
calculated by Finn et al. [4]. The latter authors computed such potential flows in order to study the mixing prop-
erties associated with various stirring protocols in different “batch stirring devices”. They studied stirring devices
consisting of the unit disk containing different numbers of circular disk stirrers. In the present formulation, such
domains are exactly the circular domains Dζ (so that the conformal map for this case is just the identity map, i.e.,
z(ζ ) = ζ ). Figure 2 of [4] shows some typical streamline distributions and, while the authors did not specify the
precise geometry or the velocities of the stirrers, these can be approximated by inspection of their Fig. 2. Figures 3–5
show streamline distributions for 2, 3 and 4 circular disk stirrers in the fluid contained in the unit disk. The geomet-
rical configurations have been chosen to be as close as possible to the first three featured in Fig. 2 of Finn et al. [4].
Moreover, the same instantaneous directions of the stirrer motions have also been used (with the speed set equal to
1 in all cases). The circulations around the stirrers has been assumed to vanish. Reassuringly, it is found that the
qualitative nature of the streamline distributions is very similar.

It should be pointed out that it is possible to retrieve, using the present formulation, the representation of the
complex potential W (ζ ) used by Finn et al. [4] in their numerical computations of the required irrotational flows.
To do this, we decompose W (ζ ) as

W (ζ ) =
∞∑

n=0

a(0)n ζ n +
M∑

j=1

∞∑
n=1

a( j)
n qn

j

(ζ − δ j )n
(24)

and consider a truncation of the infinite sums of the Fourier–Laurent series at order N1 where N1 is chosen
to be sufficiently large for the desired accuracy (typically, we choose N1 = 20). To determine the coefficients
{a(0)n |n = 0, 1, . . . , N1} and {a( j)

n |n = 1, . . . , N1; j = 1, . . . ,M} a distribution of N2 collocation points inside,
or on the boundary of, Dζ can be picked and (24) evaluated at each of these points. The left-hand side of (24)
can be calculated at these collocation points using the explicit integral formula (1). The resulting (linear) system
of N2 equations can then be solved for the required coefficients using a least-squares algorithm. We must choose
N2 ≥ (M + 1)N1 + 1 in order to obtain an overdetermined linear system. In fact, if it is required to evaluate W (ζ )

repeatedly at a large number of points in Dζ , it is advisable to compute the coefficients in the expansion (24) as just
described and then use (24) for the evaluations. This is because, once the coefficients in (24) have been determined,
evaluating (24) is computationally very efficient.

Of course, the authors of [4] derive the coefficients of (24) by substituting this representation in the boundary
conditions and enforcing them at a number of collocation points and then solving the resulting linear system by a
least-squares method. Nevertheless, we believe it is important to recognize, as we have shown here, that the very
same solution has an explicit integral representation in terms of special functions.

The method given here is not restricted just to stirrers that are circular disks, but can be applied to any set of
stirrers, even in unbounded fluid domains. All that is required is knowledge of the conformal map from a circular
region Dζ to the fluid region D. To highlight this, Fig. 6 shows the instantaneous streamlines of the irrotational flow
generated by three “paddles” or thin plates moving in an unbounded fluid region. The conformal map in this case
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Fig. 3 Streamlines of the irrotational flow generated by two
circular disk stirrers. The fluid domain is triply connected. The
stirrers are at: z1 = −0.5, radius 0.1, (complex) speed 1, z2 =
0.5, radius 0.1, (complex) speed i. Qualitatively, the streamline
distribution compares well with [4, Fig. 2]
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Fig. 4 Streamlines of the irrotational flow generated by three
circular disk stirrers. The fluid domain is quadruply connected.
The stirrers are at z1 = −0.55, radius 0.25, (complex) speed i,
z2 = 0.55eiπ/4, radius 0.2, (complex) speed −1, z3 = 0.55e−π i/4,
radius 0.1, (complex) speed eiπ/4. Qualitatively, the streamline
distribution compares well with [4, Fig. 2]

is from the circular domain Dζ consisting of the unit disk with two circular disks of radius 0.05 centred at ±0.25
excised. The map z(ζ ) is given explicitly by

z(ζ ) = ω2(ζ,−1)+ ω2(ζ, 1)

ω2(ζ,−1)− ω2(ζ, 1)
, (25)

where ω(ζ, .) is the Schottky–Klein prime function associated with Dζ . The derivation of such a conformal map is
described in [10]. This map has a simple pole inside Dζ mapping to the point at infinity in the fluid region. In the
symmetrical arrangement in Fig. 6, the two paddles at either side of the central paddle are moving vertically with
equal speeds but opposite directions. The central paddle is stationary. These streamlines are plotted by substituting
(25) in (1) and computing the contours of the imaginary part of W (ζ ).

7 Discussion

Formula (1), with constants {d j | j = 1, . . . ,M} satisfying (19) (or, equivalently, (22)) are the key results of this
paper. (1) gives the complex potential for the irrotational flow generated by a collection of stirrers moving at pre-
scribed velocities in an inviscid fluid. As we have demonstrated (cf. Fig. 6), a significant feature is that it is applicable
to M stirrers of any shape in any bounded domain or, alternatively, to M + 1 stirrers in any unbounded domain.
All that is required is knowledge (either analytical or numerical) of the conformal mapping function z(ζ ) from a
conformally equivalent circular domain Dζ to the fluid region of interest. Then, for a given point ζ in Dζ the corre-
sponding point in the physical domain is given by z(ζ )while the complex potential at that point in the physical plane
is given by W (ζ ) from (1). The (complex) fluid velocity u − iv at that point follows from u − iv = Wζ (ζ )/zζ (ζ ).

There are a variety of numerical approaches to finding the solutions to the problems considered here (see, for
example, the monograph by Prosnak [16]) but it is important to know that there exists explicit integral representations
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Fig. 5 Streamlines of the irrotational flow generated by four
circular disk stirrers. The fluid region is quintuply connected.
The stirrers are at z1 = 0.5 e3π i/4, radius 0.2, (complex)
speed i, z2 = 0.5 eπ i/4, radius 0.1, (complex) speed e−iπ/4,
z3 = 0.5 e−π i/4, radius 0.1, (complex) speed 0, z4 = 0.5 e−3π i/4,
radius 0.15, (complex) speed 1. Qualitatively, the streamline dis-
tribution compares well with [4, Fig. 2]
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Fig. 6 Streamlines of the irrotational flow generated by three
paddles in an unbounded flow. The fluid region is triply con-
nected. The left-most paddle has (complex) speed i, the central
paddle is stationary and the right-most paddle has (complex)
speed −i

for the solution, in terms of classical special functions (the Schottky–Klein prime function), once the conformal
mapping z(ζ ) is known.

One of the many possible applications of this work is to generalize the studies of Finn et al. [4] to the case of
non-circular stirrers in their batch stirring devices (although two of the latter authors have recently presented [17]
their own numerical solution to this problem, for the case of stirrers in Stokes flows, which can be adapted to the
ideal flow problem considered here).
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Appendix A: Derivation of (8)

In this appendix, we give a summary of the derivation of the solution (8) of the modified Schwarz problem.

A.1 Conditions on the given data

In order for the solution to a given modified Schwarz problem to exist the given data on the domain boundaries
must satisfy certain conditions which we now derive.

Suppose φ = Re[w(z)] for some analytic function w(z) in D then, if φ is single-valued in D, so is ∂φ/∂z. So

∂φ

∂z
= 1

2

dw

dz
(26)
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and it follows that dw/dz is analytic and single-valued in D. Cauchy’s integral formula then implies that, for any
point z in D,

w′(z) = 1

2π i

∮
∂D

w′(ζ )dζ
ζ − z

. (27)

By separating this integral around the boundary into a sum of the integrals around the separate boundary compo-
nents, and using the geometric series expansion of 1/(ζ − z) in each case, it follows from (27) that w′(z) has a
generalized Fourier–Laurent expansion of the form

w′(z) =
∑
n≥0

a(0)n zn +
M∑

k=1

∑
n≥1

a(k)n

(z − ck)n
, (28)

where ck denotes the centre of the circle Ck and {a(k)n } are some coefficients. But, on integration with respect to z,
it is clear that the primitive w(z) will itself be single-valued if and only if

a(k)1 = 0 for k = 1, . . . ,M. (29)

These are equivalent to the conditions∮
Ck

w′(z) dz =
∮

Ck

dw

ds
ds =

∮
Ck

(
∂φ

∂s
+ i
∂ψ

∂s

)
ds = 0, k = 1, . . . ,M, (30)

where ψ is the harmonic conjugate of φ and s denotes arclength around the boundary. Since φ is single-valued, it
follows that φ must satisfy the conditions∮

Ck

∂ψ

∂s
ds =

∮
Ck

∂φ

∂n
ds = 0, k = 1, . . . ,M, (31)

where ∂/∂n denotes a normal derivative to the boundary and we have made use of the Cauchy–Riemann relations.
Conditions (31) can be written in an equivalent form that depends on the boundary data for φ on ∂D (rather than

the boundary values of ∂φ/∂n). To see this, we introduce the M harmonic measures σ j (z, z̄) (for j = 1, . . . ,M)
[12] associated with D. These are defined as functions which are harmonic in D with

σ j (z, z̄) = 0 on C0, j = 1, . . . ,M, (32)

while for j = 1, . . . ,M ,

σ j (z, z̄) =
{

1 on C j

0 on Ck, k 	= j.
(33)

Green’s identity implies that, for each j = 1, . . . ,M ,

0 =
∫ ∫

D

(
φ∇2σ j − σ j∇2φ

)
dV =

∮
∂D

(
φ
∂σ j

∂n
− σ j

∂φ

∂n

)
ds, (34)

where we have used the facts that φ and {σ j (z, z̄)| j = 1, . . . ,M} are harmonic in D. However, this means that∮
∂D
φ
∂σ j

∂n
ds = 0, j = 1, . . . ,M, (35)

where we have used (31), (32) and (33). The M conditions (35) must be satisfied if a solution to the modified
Schwarz problem is to exist.

A.2 The modified Green’s function

Let G(z;α) be the modified Green’s function of the domain D defined to be the unique function satisfying

∇2G(z;α) = δ(z − α), (36)
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where α is a point in D with

G = 0, on C0,

G = γk(α), on Ck, k = 1, . . . ,M,
(37)

where {γk(α)|k = 1, . . . ,M} are independent of z (but which generally depend on α) and are determined by the
conditions∮

Ck

∂G

∂n
ds = 0, k = 1, . . . ,M. (38)

Crowdy and Marshall [9] have found an explicit formula for the modified Green’s function in a multiply connected
circular domain D in terms of the Schottky–Klein prime function. In [9] it was applied to the problem of point
vortex motion in multiply connected domains. The formula is

G(z;α) = Im[G̃(z;α)], (39)

where

G̃(z;α) = i

2π
log

(
ω(z, α)

|α|ω(z, ᾱ−1)

)
. (40)

It follows from Green’s identity that∫ ∫
D

(
φ∇2G − G∇2φ

)
dA =

∮
∂D

(
φ
∂G

∂n
− G

∂φ

∂n

)
ds. (41)

On use of the properties of G, the harmonicity of φ in D and conditions (35), we obtain

φ(α, ᾱ) =
∮
∂D

(
φ
∂G

∂n
− G

∂φ

∂n

)
ds

=
∮
∂D
φ
∂G

∂n
ds −

M∑
k=1

γk

∮
Ck

∂φ

∂n
ds =

∮
∂D
φ
∂G

∂n
ds. (42)

It is a simple matter to establish that

∂G

∂n
ds = Im

[
2
∂G

∂z
dz

]
. (43)

But (43), (39) and (40) imply that

∂G

∂n
ds = Im

[
−idG̃(z;α)

]
= Re

[
−dG̃(z;α)

]
. (44)

Therefore, on substitution of (40) and (44) in (42),

φ(α, ᾱ) = Re

[
1

2π i

∮
∂D
φ

(
d logω(z, α)− d logω(z, ᾱ−1)

)]

= Re

[
1

2π i

∮
∂D
φ

(
d logω(z, α)+ d logω(z, α−1)

)]
, (45)

where we have simply exploited the fact that the real part of a complex number is the real part of its complex
conjugate. It follows that

φ(α, ᾱ) = Re[ fs(α)], (46)

where

fs(α) = 1

2π i

∮
∂D
φ

(
d logω(z, α)+ d logω(z, α−1)

)
. (47)

Alternatively, taking into account the different forms of z̄ as a function of z on each boundary, this can be rewritten
as in (8).
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